If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-32x-9=0
a = 16; b = -32; c = -9;
Δ = b2-4ac
Δ = -322-4·16·(-9)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-40}{2*16}=\frac{-8}{32} =-1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+40}{2*16}=\frac{72}{32} =2+1/4 $
| (x+3)(x+0.5)(x-1)=0 | | 4.7q-3.5-5.5q=-1.8q-5.5 | | 16x^2-32-9=0 | | 8x+63+30+x=-61 | | 3(2x-3=-2(x+1)-6 | | x^2+x-7=13 | | 4/5x+⅔=2 | | X+28=-13-2x | | r2-3r=10 | | -5(7r+1)=-250 | | 12-2x=7-3x | | 2x/3-x=-1 | | 1/5x+4=25 | | -8(-5x+1)=-168 | | 21x+32=17x | | 9+a/4=8 | | 4^7x+1=7^x-4 | | 21-5x=-3x-(-x+3) | | ⁻0.5x+3=4⁻0.5x+3=4 | | -3(5a+2)=-111 | | (X/7)+(x/6)=9/7 | | 2^(x+2)=391 | | 8j+4-3j=-4-j-2 | | 11+x+x=43 | | 2^x+2=391 | | 9n-3=7(n×9+3)+2n | | 9n-3=7(n×3)+2n | | 2w^2=-9w+4 | | n2+2=123 | | (x)(x+6)=72 | | 4(x-4=-2(x-19) | | 7/2+2m/5=49/10 |